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Abstract

We analyze one-dimensional models for single-phase tilted toroidal thermosyphons for three different heating

conditions: known heat flux, known wall temperature and mixed heating. For the first two the governing equations lend

themselves to exact reduction to a set of three ordinary differential equations, while for the third the equations remain

coupled as an infinite set. For all three cases, the tilt angle is stabilizing while the heat rate is a destabilizer. A nonlinear

analysis is carried out using center manifold theory and normal form analysis. The known heat flux solutions lose

stability through a supercritical Hopf bifurcation, while for the other two heating conditions the Hopf bifurcation is

supercritical under some conditions and subcritical under others. Stable limit-cycle oscillations exist only for the

supercritical cases, otherwise instability leads directly to chaos. Analysis also provides an estimate for the amplitude of

oscillation for the supercritical conditions. Numerical experiments have confirmed the theoretical predictions quali-

tatively and quantitatively. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Single-phase natural convective loops or thermosy-

phons are used in a variety of engineering applications,

such as nuclear reactor cooling, solar collectors, etc. [1–4].

They have also been studied because they provide an ex-

cellent theoretical introduction to convection in more

complex geometries. Experiments have been carried out

with toroidal [5–7] and rectangular [8] loops. Of these [6]

and [8] worked with variable loop inclinations. Most an-

alytical models are one-dimensional in the sense that the

fluid velocity and temperature are averaged over a cross-

section. These models have been especially significant

since it has been found that, for certain geometries and

under certain thermal conditions, the governing equations

can be reduced to a set of three ordinary differential

equations that can exhibit chaotic behavior [9–11].

Due to the variety of geometries that can be used and

thermal conditions that can be applied, comparison

between theory and experiment is approximate unless

the same conditions are considered for both. It is

sometimes assumed that all thermal conditions and loop

geometries give similar results; this may perhaps be true

for overall qualitative behavior, but certainly not in the

details. The occurrence of chaos in these mathematical

models has been an aspect that has attracted the atten-

tion of many researchers, and certainly all of them,

under specific conditions, do that.

The focus on chaos has obscured the fact that the ge-

ometry and heating condition significantly affect the de-

tails of system behavior and there is some confusion in the

literature in this regard. For example, some experiments

[5,8] have shown the presence of stable oscillations while

the most commonly used model based on the Lorenz

equations does not show the existence of stable limit cy-

cles [9]. The existence or not of oscillations is important

for the design of convection loops in actual applications.

In this work we will clarify the situation by choosing the

simplest geometry possible, the torus, and apply the

commonly used heating conditions. In each case, we will

be interested in the effect of nondimensional parameters

corresponding to heating and tilt angle.

Each of the heating conditions will be examined

separately though in a very similar manner. The steady

states will be found and their linear stability determined.
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The nature of the loss of stability will be analyzed by

center manifold theory and normal form analysis [12], a

method that allows the determination of system behav-

ior near a bifurcation point by means of nonlinear

changes of coordinates that reduce the dimension of the

problem. The center manifold is an invariant manifold

in phase space from which trajectories will not escape; it

is tangent to the eigenspace spanned by the eigenvectors

of the Jacobian matrix of the system at the fixed point.

The center manifold theorem [12–14] then states that

there is a local nonlinear transformation of the depen-

dent variables such that the transformed stable eigen-

modes decay exponentially and the nonlinear dynamics

are governed only by the equations on the center man-

ifold. We will use the center manifold projection (CMP)

technique of Carr [13] to reduce the multi-dimensional

system to a two-dimensional time-invariant manifold

and derive its coefficients which define the nature of the

instability. The analytical results obtained this way will

be confirmed by a fourth-order Runge–Kutta numerical

simulation.

2. Problem description

Consider a fluid-filled loop, shown in Fig. 1, in the

form of a torus with tube diameter d and the torus

radius R, where d � R. The loop is heated in some parts

and cooled in others. The temperature differences within

the fluid lead to changes in density and hence buoyancy

forces that create natural circulation. We will use the

Boussinesq approximation which neglects change in

fluid density in all but the buoyancy force term. The

dependent variables are the cross-sectional average of

Nomenclature

c specific heat of fluid at constant pressure

d tube diameter

f friction coefficient¼ 8l=d for fully developed
flow

g acceleration due to gravity

h heat transfer coefficient

H nondimensional heat transfer coefficient

q heat rate per unit lengthbqq amplitude of heat flux variation

Q nondimensional heat flux

r radial coordinate, amplitude of limit cycle

R torus radius

s longitudinal coordinate

t time

T fluid temperature

Tc uniform wall temperature distribution

T c
m Fourier cosine coefficient of temperature

T s
m Fourier sine coefficient of temperature

Tw wall temperaturecdTdT amplitude of temperature variation

DT nondimensional amplitude of temperature

variation

u average fluid velocity

x nondimensional fluid velocity

ym nondimensional Fourier cosine coefficient of

temperature

zm nondimensional Fourier sine coefficient of

temperature

Greek symbols

a tilt angle

b coefficient of thermal expansion

d linear coefficient in amplitude equation

� order of perturbation in parameter space

h angular coordinate

k eigenvalue

l dynamic viscosity

q fluid density

r nonlinear coefficient in amplitude

equation

s nondimensional time

Subscripts and superscripts

� time independent solution

cr critical value

Fig. 1. Schematic of toroidal thermosyphon.
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the fluid velocity u and the temperature T. The inde-

pendent variables are the time t and the angular coor-

dinate h which is measured counterclockwise from a line

that is inclined at an angle a with respect to the hori-

zontal plane. This line also separates regions with

heating and cooling. The angle a will be referred to as

the tilt or inclination of the loop since it is varied in

experiments by rotating the loop about a horizontal axis

normal to its plane.

Due to mass conservation, u is independent of h and

is a function of t alone. The integral of the momentum

equation over the loop gives

du
dt

þ 4f
qd

u ¼ bg
2p

Z 2p

0

T cosðh þ aÞ dh; ð1Þ

where u ¼ uðtÞ and T ¼ T ðh; tÞ. The frictional wall shear
has been taken to be proportional to the mean fluid

velocity with f being the proportionality constant, q is

the fluid density, b is its coefficient of thermal expansion

and g is the acceleration due to gravity. The energy

equation is given by

oT
ot

þ u
R
oT
oh

¼ 4q
pd2qc

; ð2Þ

where c is the specific heat of the fluid, and q is the heat

rate per unit length of the loop. Heat transfer due to

axial conduction has been neglected since it is important

only for the onset of convection.

Expanding the temperature in a Fourier series as

T ðh; tÞ ¼ T c
0 ðtÞ þ

X1
m¼1

T c
mðtÞ cosmh

�
þ T s

mðtÞ sinmh
�

ð3Þ

and substituting in Eq. (1), the momentum equation

becomes

du
dt

þ 4f
qd

u ¼ bg
2

T c
1 cos a

�
� T s

1 sin a
�
: ð4Þ

Nondimensionalization of the governing equations

will be carried out using

u ¼ 4fR
qd

x; t ¼ qd
4f

s; T c
m ¼ 32f 2R

q2d2bg
ym;

T s
m ¼ 32f 2R

q2d2bg
zm;

ð5Þ

where x and s are the nondimensional fluid velocity and

time, respectively, and ym and zm are the nondimensional

Fourier coefficients of the temperature.

There are three different cases of heating conditions

that will be discussed separately.

(a) Known heat flux where qðhÞ is known over the

entire loop. This gives a simple mathematical model, but

since a prescribed heat extraction is difficult to achieve in

practice, this condition has not been experimentally

tested.

(b) Known wall temperature where the temperature of

the wall, TwðhÞ, is known over the loop, and heat transfer

to the fluid is by thermal convection. Both analysis and

experiments are simple to carry out. The effect of the tilt

angle has, however, not been previously reported in

detail for this heating condition.

(c)Mixed heatingwhere the heat flux is known for part

of the loop and the wall temperature is known for the rest.

This is the most practical thermal condition from an ex-

perimental point of view, since heating can be achieved by

electrical heaters and cooling by heat exchangers, and is

the one that is perhaps most common in engineering

applications. The analysis is complicated by the fact that

the governing equations cannot be reduced to a finite set

of ordinary differential equations except by truncation.

3. Known heat flux

The linear stability analysis and numerical solutions

of this problem were reported in Sen et al. [15].

3.1. Dynamical model

The simplest heating condition is when the heat rate

per unit length is a sine function, qðsÞ ¼ �bqq sin h, where
the angular h, and longitudinal s, coordinates are related

by the radius of the torus R. Other periodic forms with

zero mean value give the same three equations. Locally,

a positive q indicates heating, and the negative indicates

cooling. Eqs. (2) and (3) give

dT c
0

dt
þ
X1
m¼1

dT c
m

dt
cosmh

	
þ dT s

m

dt
sinmh



þu
R

X1
m¼1

�
� mT c

m sinmh þ mT s
m cosmh

�
¼ � 4bqq

pd2qc
sin h:

ð6Þ

Integrating around the loop, we obtain dT c
0 =dt ¼ 0

from which we find that T c
0 is a constant. Also on mul-

tiplying Eq. (6) first by cos h and integrating from 0 to

2p, and then repeating the procedure with sin h, we get

the pair of equations:

dT c
1

dt
þ u
R
T s
1 ¼ 0; ð7Þ

dT s
1

dt
� u
R
T c
1 ¼ � 4bqq

pd2qc
: ð8Þ

The nondimensional form of the governing equations

(4), (7) and (8) is

dx
ds

¼ �xþ y cos a � z sin a; ð9Þ

dy
ds

¼ �xz; ð10Þ
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dz
ds

¼ �Qþ xy; ð11Þ

where we have dropped the subscript 1 from y1 and z1.
The governing parameters are

Q ¼ bqqq2dbg
32pcf 3R

ð12Þ

representing the magnitude of the heating, and a, which
is the tilt of the loop.

3.2. Steady states and linear analysis

The two critical points of the dynamical system (9)–

(11) are Pþ ¼ ðx; y; zÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q cos a

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q= cos a

p
; 0Þ and

P� ¼ ðx; y; zÞ ¼ ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q cos a

p
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q= cos a

p
; 0Þ, both of

which exist if �90� < a < 90�. Here x, y, and z denote

the time independent solutions of the system. A linear

stability analysis shows that Pþ is stable as long as

Q6 sin2 a= cos3 a with aP 0 and unstable otherwise.

The eigenvalues at the neutral stability curve

Q ¼ sin2 a= cos3 a, shown in Fig. 2, are �1 and

	i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Q cos a

p
indicating a Hopf bifurcation. It can be

observed that the unstable region decreases as the tilt

angle is increased. Similarly, P� is stable for Q6 sin2 a=
cos3 a and a6 0, and unstable otherwise.

3.3. Nonlinear analysis

Details of the nonlinear analysis are in Appendix A,

and we provide only the final results. Just above the

neutral stability curve, the system (9)–(11) in polar co-

ordinates ðr; hÞ is approximated by a Stuart–Landau

amplitude and phase equations as

dr
dt

¼ dð�Þr þ rr3;
dh
dt

¼
ffiffiffi
2

p
tan a; ð13Þ

where the coefficients of the linear and nonlinear terms

in (13) are given explicitly by

dð�Þ ¼ � � sin2 a
4ðcos2 a � 2Þ ;

r ¼ � 1

32

sin2 a cos2 a cos2 a � 10=7ð Þ
7 cos6 a � 36 cos4 a þ 60 cos2 a � 32

ð14Þ

for 06 a < 90� and � > 0. Here �Qcr is a perturbation

above the neutral stability curve where Qcr ¼ sin2 a=
cos3 a is the critical value of the heating parameter. dð�Þ
is always positive while r is always negative indicating

that, along the neutral curve, the Hopf bifurcation is

always supercritical and a stable limit cycle is expected in

the unstable side. The angular velocity of these periodic

oscillations is
ffiffiffi
2

p
tan a and the amplitude is rð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j � dð�Þ=rj
p

. The amplitude rð�Þ increases with the

heating parameter Q.

For numerical simulation we assume a ¼ 45� and

� ¼ 0:05, corresponding to a point in the unstable

region just above the neutral curve. The initial tran-

sients are discarded. The three-dimensional phase

space trajectory is shown in Fig. 3 indicating a stable

limit cycle for almost all initial conditions. Similar

behavior was obtained at other places along the

neutral stability curve confirming the prediction of

the CMP theory. Fig. 12 shows a comparison be-

tween the analytical and numerical amplitudes for

various values of �. The qualitative and quantitative

agreement are remarkably good with rms errors of

the order of 1%.

4. Known wall temperature

This case was first investigated by Yorke and Yorke

[9].
Fig. 2. Known heat flux: neutral stability curve for Pþ in (Q; a)
space.

Fig. 3. Known heat flux: attractor in phase space; a ¼ 45�,
� ¼ 0:05.
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4.1. Dynamical model

We will assume that the wall temperature is given by

a sinusoidal variation Tw ¼ Tc � cdTdT sin h, so that the

heat rate per unit length is given by

q ¼ pdhðTw � T Þ; ð15Þ

where h is a heat transfer coefficient. After substituting

the above and Eq. (3) in Eq. (2), the energy equation

becomes

dT c
0

dt
þ
X1
m¼1

dT c
m

dt
cosmh

	
þ dT s

m

dt
sinmh



þ u
R

X1
m¼1

�
� mT c

m sinmh þ mT s
m cosmh

�
¼ 4h

dqc
Tc

"
� cdTdT sin h � T c

0

�
X1
m¼1

T c
m cosmh

�
þ T s

m sinmh
�#

: ð16Þ

Integrations of Eq. (16) from 0 to 2p, first with weight

cos h and then repeating with weight sin h, give us the

ordinary differential equations

dT c
0

dt
¼ 4h

dqc
Tc
�

� T c
0

�
; ð17Þ

dT c
1

dt
þ u
R
T s
1 ¼ � 4h

dqc
T c
1 ; ð18Þ

dT s
1

dt
� u
R
T c
1 ¼ � 4h

dqc
cdTdT�

þ T s
1

�
: ð19Þ

Eq. (17) merely describes the time change of the mean

temperature.

The nondimensional versions of Eqs. (4), (18) and

(19) are

dx
ds

¼ �xþ y cos a � z sin a; ð20Þ

dy
ds

¼ �Hy � xz; ð21Þ

dz
ds

¼ �DT � Hzþ xy; ð22Þ

where the subscript 1 from y1 and z1 have been dropped,

and

H ¼ h
fc

; DT ¼ hcdTdT q2d2bg
32f 3cR

: ð23Þ

The governing parameters H and DT are the nondi-

mensional forms of the heat transfer coefficient and the

amplitude of the temperature distribution, respectively.

4.2. Steady states and linear stability

The critical points of Eqs. (20)–(22) are given by

solutions of the cubic

x3 þ ðH 2 � DT cos aÞx� HDT sin a ¼ 0 ð24Þ

along with

y ¼ DT x
H 2 þ x2

; z ¼ � HDT
H 2 þ x2

: ð25Þ

The steady-state velocities, determined from Eq. (24),

are shown in Fig. 4 for H ¼ 0:1 (which is a realistic value

for experimental conditions), and different values of the

parameter DT . Only one critical point exists in the

ranges �180� < a < �a� and a� < a < 180�, where a�

varies from a� ¼ 0� when DT ¼ 0þ to a� ¼ 90� as

DT ! þ1.Ontheotherhand,therearethreecriticalpoints

in the �a� < a < a� range. We designate as P1 and P3 the
outer positive and negative branches, respectively, and P2
theinnerbranch.ThecriticalpointsP1 andP3 correspondto
the counterclockwise and clockwisemotions of the flow.

Linear stability analysis of the dynamical system

leads to a polynomial equation for the eigenvalues

k3 þ ð2H þ 1Þk2 þ x2
�

þ H 2 þ 2H þ y sin a þ z cos a
�
k

þ x2 þ y cos að � z sin aÞx
þ y sin að þ z cos aÞH þ H 2 ¼ 0: ð26Þ

For P1 the eigenspectrum contains one stable real

eigenvalue and two complex conjugates which can be

either stable or unstable depending on the values of a
and DT . At neutral stability the leading eigenvalues are

purely imaginary indicating the existence of a Hopf bi-

furcation. Fig. 5 shows the neutral stability curve for P1
in the parameter space (DT ; a). As the tilt angle

increases, the flow can handle larger temperature

Fig. 4. Known wall temperature: steady-states xðaÞ; H ¼ 0:1
and different DT ; � stable; þ unstable.
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differences before losing stability. The stability curve for

P3 is similar, being a mirror image with respect to the

ordinate. P2 is always unstable [16].

4.3. Nonlinear analysis

A nonlinear analysis similar to that in Appendix A

was carried out, though the details will not be presented.

Once again we consider a point in the unstable region

with DT ¼ ð1þ �ÞDTcr, where Tcr is the critical value.

Stuart–Landau and phase equations similar to Eq. (13)

were obtained. The coefficients dð�Þ and r cannot be

displayed in explicit analytical form but can be calcu-

lated from the CMP analysis. The angular velocity, to

leading order, is the absolute value of the complex

conjugate eigenvalues at the neutral stability curve and

hence depends on a.
The results from the CMP analysis show that as we

move along the neutral stability curve in Fig. 5, there is a

change in the nature of the Hopf bifurcation from sub-

to super-criticality that is indicated in the figure. For

a < 26:5�, r is positive so that the bifurcation is sub-

critical, whereas for aP 26:5� it is negative and solution

bifurcates supercritically. Stable limit cycles exist for the

supercritical Hopf bifurcation, while for the subcritical

part of the curve, chaotic trajectories can be expected to

appear as soon as the steady states become unstable.

Numerical integrations of Eqs. (20)–(22) were carried

out for a ¼ 0� and a ¼ 45�, with � ¼ 0:05. In accordance

with the CMP analysis, the numerical solutions for

a ¼ 0�, shown in Fig. 6(a), give a strange attractor, while

the corresponding results for a ¼ 45� shown in Fig. 6(b)

produce a limit cycle.

Comparison between the analytical and numerical

amplitudes on the unstable side of the supercritical part

of the neutral stability curve is shown in Fig. 12.

Quantitatively the two solutions diverge slightly with

increasing �. This may be due to terms of order �2 and

higher or of order r5 and higher that were neglected in

the nonlinear analysis, since the agreement is good for

small � for which both are small. There is complete

agreement, however, as to the point of the change from

sub- to super-criticality along the Hopf curve since that

depends only on the sign of the coefficients of the Stu-

art–Landau equation.

5. Mixed conditions

This was analyzed by Gorman et al. [7] through a

truncated approximation.

5.1. Dynamical model

Here the heating will be through a constant heat fluxbqq, and the cooling through a constant wall temperature

Tc. Thus, we have

q ¼ pdhðTc � T Þ for 06 h6 p;bqq for p < h < 2p:

�
ð27Þ

Fig. 5. Known wall temperature: neutral stability curve for P1
in ðDT ; aÞ space; � subcritical; �þ� supercritical.

(a) (b)

Fig. 6. Known wall temperature: attractor in phase space: (a) a ¼ 0�, � ¼ 0:05; (b) a ¼ 45�, � ¼ 0:05.
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Substituting in the energy equation, and following a

similar process as before for the expanded differential

equations, with weights cos nh and sin nh, we get the

three integrals

dT 0
0

dt
¼ 2

pd2qc

"
� pdhT 0

0 þ dh
X1
n¼1

T s
n

ð�1Þn � 1

n
þ bqq#;

ð28Þ

dT c
m

dt
þ m

u
R
T s
m

¼ 2

pd2qc

2664� pdhT c
m þ 2dh

X1
n¼1
n6¼m

nT s
n

ð�1Þnþm � 1

n2 � m2

3775;
ð29Þ

dT s
m

dt
� m

u
R
T c
m

¼ 2

pd2qc
2dhT 0

0

ð�1Þm � 1

m

2664 � pdhT s
m

þ 2dh
X1
n¼1
n6¼m

mT c
n

ð�1Þnþm � 1

m2 � n2
þ 2bqq ð�1Þm � 1

m

3775; ð30Þ

where m ¼ 1; 2; . . . ; 2ðk þ 1Þ; . . . and where we have

written T 0
0 ¼ T0 � Tc. The nondimensional equations of

the resulting infinite-dimensional dynamical system are

dx
ds

¼ �xþ y1 cos a � z1 sin a; ð31Þ

dy0
ds

¼ Q
2
� H

2
y0 þ

H
2p

X1
n¼1

zn
ð�1Þn � 1

n

" #
; ð32Þ

dym
ds

¼ �H
2
ym þ H

p

X1
n¼1
n 6¼m

nzn
ð�1Þnþm � 1

n2 � m2

24 35
� mxzm; ð33Þ

dzm
ds

¼ �H
2
zm þ Q

p
ð�1Þm � 1

m
þ H

p
y0
ð�1Þm � 1

m

þ H
p

X1
n¼1
n 6¼m

myn
ð�1Þnþm � 1

m2 � n2

24 35þ mxym; ð34Þ

where H and Q are the same as in Eqs. (23) and (12).

5.2. Steady states and linear stability

The critical points of the dynamical system are found

by first solving the steady-state versions of Eqs. (1), (2)

and (27) in dimensional form as

u2 ¼ bqqbgR
p2dcf

�
cos a:þ 2pRh½cos a þ ð4Rh=dqcuÞ sin a�

dqcu½1þ ð4Rh=dqcuÞ2�

� coth
2pRh
qdcu

�
; ð35Þ

T ðhÞ¼

Tcþ 4Rq̂q
d2qcu

expf�4Rhh=dqcug
1� expf�4pRh=dqcug

for 06h6p;

Tcþ 4Rq̂q
d2qcu

h
pþ

2expf�4pRh=dqcug�1
1� expf�4pRh=dqcug

� �
for p< h< 2p:

8>>>>>>><>>>>>>>:
ð36Þ

Using the expansion (3) in the above, the Fourier co-

efficients T
c

m and T
s

m can be introduced. Nondimension-

alization then gives the critical points of Eqs. (31)–(34)

as solutions of

x2 ¼ Q
2

p
cos a

"
þ H

x
cos a þ H=xð Þ sin a

1þ ðH=xÞ2

 !
coth

pH
2x

#
;

ð37Þ

y0 ¼
Q
2

1

H

�
þ p

x
3

2

	
þ 2e�pH=x � 1

1� e�pH=x


�
; ð38Þ

ym ¼ Q
x

H

x½m2 þ ðH=xÞ2�
1� e�pH=xð�1Þm

1� e�pH=x

"
þ 1� ð�1Þm

pm2

#
;

ð39Þ

zm ¼ � QH 2

mx3½m2 þ ðH=xÞ2�
1� e�pH=xð�1Þm

1� e�pH=x
; ð40Þ

where m ¼ 1; 2; . . . These steady-state solutions of the

fluid velocity and temperature fields were determined by

Greif et al. [17] for zero angle of inclination, and by Sen

et al. [18] for an inclined thermosyphon.

The steady-state velocity solutions, determined from

Eq. (37), are presented in Fig. 7 as x vs. a for H ¼ 0:1

Fig. 7. Mixed conditions: steady-states xðaÞ; H ¼ 0:1 and dif-

ferent values of Q; � stable; þ unstable.
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and different values of Q. No critical points exist for

�180� < a < �147:5� and 147:5� < a < 180�; one exists

for �147:5� < a < �a� and a� < a < 147:5� where a�

varies from a� ¼ 32:5� when Q ¼ 0þ to a� ¼ 90� as

Q ! þ1; two critical points exist for �32:5� < a
< 32:5�; and three for �a� < a < �32:5� and 32:5� < a

Fig. 8. Mixed conditions: eigenvalues of P1 for m ¼ 10, a ¼ 45�,
Q ¼ Qcr.

Fig. 9. Mixed conditions: neutral stability curve for P1 in ðQ; aÞ
space. � subcritical; �þ� supercritical.

(a) (b)

(c) (d)

Fig. 10. Mixed conditions: time series (a) xðsÞ, (b) y1ðsÞ, (c) z1ðsÞ, and (d) attractor in phase space for a ¼ 0�, � ¼ 0:05.
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< a�. The critical points are designated P1, P2 and P3 as

before being the outer positive, the inner, and the outer

negative branches, respectively.

From a linear stability analysis of the dynamical

system the eigenvalues are obtained numerically. To

compute the infinite-dimensional system, we truncate

the dynamical system up to order m and make sure that

m is large enough so that the leading eigenvalues are

converged. For mP 10 not only the leading eigenvalues

have already converged to their appropriate values but

the rest of them as well. In fact, as we increase m new

complex conjugate eigenvalues appear with larger

imaginary parts but with the same real parts, as shown

in Fig. 8 for m ¼ 10. This figure shows a typical eigen-

spectrum for a system of size 2ðmþ 1Þ ¼ 22 for a ¼ 45�
and Q ¼ Qcr, and is qualitatively similar to that on any

point along the neutral stability curve. It is interesting to

note that, other than the leading eigenvalues and those

lying in the real axis, the rest of them are equally spaced.

This behavior comes from the nature of the dynamical

system itself; why this is so is a detail that is examined in

Appendix B.

Once again instability is through imaginary eigen-

values indicating a Hopf bifurcation. The neutral

stability curve, Q vs. a with H ¼ 0:1, for P1 is presented
in Fig. 9. The stability curve for P3 is a mirror image

with respect to the ordinate. Stable and unstable steady

states are also indicated in Fig. 7; P2 is always unstable.
Once again, as the tilt angle increases, higher heat fluxes

can be sustained before the steady state loses stability.

5.3. Nonlinear analysis

Solutions of the infinite-dimensional system (31)–(34)

can be reduced to trajectories on the two-dimensional

center manifold whose projected equations contain the

long-time dynamics of the original system. Applications

of CMP to infinite systems can be found in Carr [13], Ho

and Chang [19], and Chen and Chang [20], among

others. After the CMP procedure and normal form

analysis, the corresponding Stuart–Landau and phase

equations for Q ¼ ð1þ �ÞQcr are obtained, where Qcr is

the critical value. As in the known wall temperature case,

the results of this analysis show that there is a change

(a) (b)

(c) (d)

Fig. 11. Mixed conditions: time series (a) xðsÞ, (b) y1ðsÞ, (c) z1ðsÞ, and (d) attractor in phase space for a ¼ 45�, � ¼ 0:05.
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from sub- to super-criticality of the Hopf bifurcation as

one moves along the curve. This is indicated in Fig. 9.

For verification, numerical integration is carried out

with � ¼ 0:05 for a ¼ 0� and a ¼ 45�. For a ¼ 0� the re-
sults are depicted as time dependence and a three-di-

mensional projection in Fig. 10. Subcriticality is indicated

by the appearance of complex trajectories. On the other

hand, the corresponding results for a ¼ 45�, shown in

Fig. 11, indicate periodic limit-cycle behavior since the

bifurcation there is supercritical. Comparison of the

amplitude of oscillations using the analytical and nu-

merical methods is shown in Fig. 12. Agreement is good

and the rms difference between them is less than 2.1%.

The results here qualitatively confirm the chaotic

behavior found in the mixed heating experiments of

Creveling et al. [5] and Gorman et al. [21] for a ¼ 0

which happens to be in the subcritical region. For

�6� < a < 6�, Damerell and Schoenhals [6] also exper-

imentally found chaotic behavior of the flow.

6. Discussion

This contribution covers three aspects of the toroidal

thermosyphon problem: (a) all three heating cases are

nondimensionalized in a similar way to be able to com-

pare the results, (b) all three cases include the effect of

angular inclinations, and (c) similar nonlinear analyses

are carried out for each case. The results show that the

selection of a thermosyphon model affects the behavior

of the resulting dynamical system, especially in terms of

the possible presence or absence of oscillatory behavior,

something that is important to know from the point of

view of applications. For known heat flux, stable limit

cycles always exist, while for the other two cases it is

conditional. For mixed conditions at loss of stability, for

instance, there is either oscillatory behavior or not de-

pending on parameter values. Truncation of the system,

Eqs. (31)–(34), to three equations produces the Lorenz

equations for which it is known that the steady state gives

way directly to chaos without stable limit cycles.

The results thus show that experimental observations

must be compared to the predictions of the appropriate

theoretical model. The presence or absence of oscillatory

behavior is one aspect that may be different. Further-

more, as shown in Fig. 12, even for parameter values for

which there are limit cycles, the amplitudes are different

for the same �. If, however, it is intended to show the

existence of chaos, then it does not make much differ-

ence which model is used.

7. Conclusions

Natural circulation loops have a broad range of ap-

plications since they work as dependable heat pumps that

do not require external pumps. An adequate knowledge

of their operation is necessary for design since the be-

havior of the system changes with heating values and

inclinations. In the present work we have developed an-

alytical models of tilted toroidal thermosyphons for three

different heating conditions, and determined their linear

and nonlinear characteristics for parameters corre-

sponding to the heat rate and inclination angle. Under

known heat flux and known wall temperature conditions

the governing equations lend themselves to exact de-

coupling, while this is not the case for mixed heating

where the equations remain coupled as an infinite set.

The center manifold theory and normal form analysis

are powerful tools in the study of nonlinear dynamical

systems. Here they are applied to finite- and infinite-di-

mensional dynamical systems to achieve a reduction of

the dimension of the dynamical system near a bifurca-

tion point that contains the original behavior. Using this

approach we have shown that the solutions for the

known heat flux mode bifurcate supercritically along the

Hopf curve, while for known wall temperature and

mixed heating they can be sub- or super-critical. This

may be important in the design of natural convection

loops. Numerical experiments have confirmed the

theoretical predictions. Generally speaking, the behavior

goes from sub- to supercritical as the tilt angle is in-

creased. It must be remembered that the present analysis

is only valid in the vicinity of the neutral stability curve.

Farther away an increase in the heating parameter

always induces chaotic behavior [15].

It is also shown that the orientation of the loop with

respect to the gravity vector has a great influence on the

linear and nonlinear characteristics of the resulting dy-

namical system. For all three heating conditions studied,

the tilt angle is a stabilizing parameter while the heat

rate is a natural destabilizer. In general, the fluid can

Fig. 12. Comparison between analytically and numerically

determined amplitudes for all three heating conditions; �þ�
analytical; � � � numerical.
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reach higher velocities before losing stability as the angle

of inclination increases thus advecting larger heat rates.

Side heating as opposed to bottom heating may thus be

recommended for certain applications.
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Appendix A

We apply the center manifold projection and normal

form analysis to the local form, with respect to the

critical point Pþ, of system (9)–(11) given by

dx0

ds
¼ �x0 þ y0 cos a � z0 sin a;

dy0

ds
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q cos a

p
z0 � x0z0;

dz0

ds
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q= cos a

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q cos a

p
y0 þ x0y0;

ðA:1Þ

where the primes denote deviations from Pþ. We now

introduce a small perturbation in parameter space of the

form Qp̂p ¼ �Qcr, where Qp̂p � Oð�Þ and Qcr is the critical

value of Q. By applying a similarity transformation,

½x0; y0; z0�T ¼ T½w1;w2;w3�T, where T is given by

T ¼ 1

cos2 a � 2

� sin2 a
ffiffi
2

p

4
sin 2a �1

� sin a tan a
ffiffi
2

p

4
sin a sin a tan a

� sin a �
ffiffiffi
2

p
sin2 a sin a

264
375

ðA:2Þ

to the perturbed version of the dynamical system (A.1),

we obtain

dw

dt
¼ Kwþ P̂PwþNðwÞ; ðA:3Þ

where P̂P is the linear perturbation matrix containing

terms of order �, NðwÞ are the quadratic nonlinear terms,

and K is the Jacobian of (A.1) being cast into a Jordan

form as

K ¼
0 �

ffiffiffi
2

p
tan a 0ffiffiffi

2
p

tan a 0 0
0 0 �1

0@ 1A: ðA:4Þ

In (A.4) the neutral eigenvalues are associated with

w1 and w2. Hence, if we write (A.3) as

dw�

dt
¼ Naðw�;w3Þ;

dw3

dt
¼ Nbðw�;w3Þ; ðA:5Þ

where w� ¼ ðw1;w2Þ, the center manifold theorem [12–

14] then states that the trajectories of the system (A.5)

near the local origin can be approximated by the two-

dimensional system dw�=dt ¼ Na½w�;/ðw�Þ� provided

that w3 ¼ /ðw�Þ is a smooth invariant manifold for

dw3=dt in (A.5), and /ð0Þ ¼ D/ð0Þ=Dw� ¼ 0.

We first focus our attention on the transformation at

the Hopf bifurcation point � ¼ 0 which removes P̂P from

Eq. (A.3), and approximate a center manifold /ðw�Þ of
the form

/ðw1;w2Þ ¼ c1w2
1 þ c2w1w2 þ c3w2

2 þOðjw�j3Þ ðA:6Þ

since the system (A.3) has only quadratic nonlinearities.

On using the chain rule in dw3=dt of (A.5), with

w3 ¼ /ðw1;w2Þ, and equating powers of w2
1, w1w2 and

w2
2, we find

c1 ¼ �c3 ¼ k1 �
ffiffiffi
2

p
tan a c2; c2 ¼

k2 þ 4
ffiffiffi
2

p
tan a k1

8 tan2 a þ 1
;

k1 ¼
sin2 a sin 2a

2 cos2 a � 2ð Þ2
; k2 ¼

ffiffiffi
2

p
2� 3 cos2 að Þ sin2 a

6 cos2 a � 2ð Þ2
:

The reduced system containing the projected equa-

tions for the center manifold is given by

dw1

dt
¼ �

ffiffiffi
2

p
tan a w2 þ s1ðw1;w2Þ þOðjw1j4; jw2j4Þ;

ðA:7Þ

dw2

dt
¼

ffiffiffi
2

p
tan a w1 þ s2ðw1;w2Þ þOðjw1j4; jw2j4Þ; ðA:8Þ

where s1 and s2 include quadratic and cubic nonlinear

terms, not shown explicitly due to lack of space. A

normal form analysis provides further simplification

using a smooth nonlinear coordinate mapping of the

type w� ¼ vþ WðvÞ to transform away many nonlinear

terms without losing relevant information. WðvÞ is a

homogeneous function of v which can be Taylor ex-

panded. For the present case W is a polynomial of degree

2 and higher whose coefficients are to be determined.

The computation of these terms, for the Hopf bifurca-

tion, are well documented in the literature [14]. Hence,

the system (A.7) and (A.8) can be transformed to

dv

dt
¼ 0 �

ffiffiffi
2

p
tan affiffiffi

2
p

tan a 0

	 

v

þ
ðrv1 � cv2Þ v21 þ v22

� �
ðcv1 þ rv2Þ v21 þ v22

� �
0@ 1A ðA:9Þ

for suitable constants r and c which depend on the

nonlinear part of (A.7) and (A.8). The type of the bi-

furcation depends on the sign of r: positive means

subcritical and negative supercritical.

The perturbed version, for small �, of (A.7) and (A.8)

is given without explicit construction by
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dw�

dt
¼ AKw

� þ AP̂Pw
� þ sðw�Þ; ðA:10Þ

where AK is the reduced Jacobian of (A.4) associated

with w1 and w2, and the relevant coefficients in AP̂P are

given later. It is to be noted that the CMP, being a

nonlinear map of order Oðjw�j2Þ, does not alter the lin-

ear part of Eq. (A.3) [19]. Thus, we can transform the

linear part of (A.10) to a suitable form without dis-

turbing the nonlinear portion, converted already to the

desired normal form (A.9) for � ¼ 0, by means of a near

identity linear mapping v ¼ uþ Bð�Þu where B � Oð�Þ,
which vanishes as � ! 0. For a Hopf bifurcation the

linear part of a perturbed Jacobian, K þ P̂P, can always

be transformed to

Ad ¼ dð�Þ �
ffiffiffi
2

p
tan affiffiffi

2
p

tan a dð�Þ

	 

¼ ðAK þ AKB� BAK þ AP̂PÞ; ðA:11Þ

where it is clear that d � Oð�Þ so that, to leading order,

AP̂P does not change the coefficients of the leading order

nonlinear terms of the transformed equation (A.9). A

particular transformation B with the relevant coefficients

of the perturbation matrix AP̂P, necessary to calculate d,
are

B ¼
0 � sin 2a

16
ffiffi
2

p
ðcos2 a�2Þ

� sin 2a
16
ffiffi
2

p
ðcos2 a�2Þ

0

 !
;

AP̂P ¼
� sin2 a �

2ðcos2 a�2Þ
P̂P12

P̂P21 0

 ! ðA:12Þ

from which the value of dð�Þ, given in Eq. (14), was

determined. Thus, the complete mapping for the system

(A.10) to a normal form is w� ¼ uþ Bð�Þ uþ WðuÞ so

that (A.10) becomes

du

dt
¼ dð�Þ �

ffiffiffi
2

p
tan affiffiffi

2
p

tan a dð�Þ

	 

u

þ
ðru1 � cu2Þ u21 þ u22

� �
ðcu1 þ ru2Þ u21 þ u22

� �
0@ 1A ðA:13Þ

which is the unfolding for the perturbed Hopf bifurca-

tion. A cylindrical mapping u1 ¼ reih, u2 ¼ re�ih of

(A.13) leads us to Eq. (13), where c appears only in the

higher order terms of the phase equation dh=dt. As in-

dicated before, the Taylor coefficients of s in Eq. (A.10)

are related to r [14] which is given explicitly in Eq. (14).

Appendix B

From the Jacobian of the system (31)–(34) for m and

ðmþ 1Þ, which provide systems of dimensions 2ðmþ 1Þ
and 2ðmþ 2Þ, respectively, we find the relation

ðB:1Þ

where J2Dm is a 2� 2 matrix that includes the terms

arising from the increased system. Since the terms in the

matrices ĈC and C are either zero or very small in mag-

nitude, the characteristic equations of the systems can be

closely associated as /mþ1ðkÞ ffi /mðkÞ � /DmðkÞ ¼ 0

where /mþ1ðkÞ, /mðkÞ and /DmðkÞ are the determinants

D2ðmþ2Þ, D2ðmþ1Þ, and D2Dm, respectively. It is to be noted

that D2Dm contains the characteristic polynomial corre-

sponding to new pair of complex eigenvalues while

D2ðmþ1Þ and D2ðmþ2Þ are the characteristic polynomials for

m and ðmþ 1Þ, respectively. For mP 2 the eigenvalues

are related in the following way:

Reðkðmþ1ÞÞ ffi ReðkðmÞÞ ffi �H
2
; ðB:2Þ

	Imðkðmþ1ÞÞ ffi 	 mþ 1

m

	 

ImðkðmÞÞ; ðB:3Þ

where kðmþ1Þ corresponds to ðk2mþ3; k2mþ4Þ, and kðmÞ to

ðk2mþ1; k2mþ2Þ.

References

[1] D. Japikse, Advances in thermosyphon technology, in:

T.F. Irvine, J.P. Hartnett (Eds.), Advances in Heat

Transfer, vol. 9, Academic Press, New York, 1973, pp. 1–

111.

[2] Y. Zvirin, A review of natural circulation loops in

pressurized water reactors and other systems, Nucl. Eng.

Des. 67 (1981) 203–225.

[3] B. Norton, S.D. Probert, Natural-circulation solar-energy

stimulated systems for heating water, Appl. Energy 11

(1982) 167–196.

[4] R. Greif, Natural circulation loops, ASME J. Heat

Transfer 110 (1988) 1243–1258.

[5] H.F. Creveling, J.F. de Paz, J.Y. Baladi, R.J. Schoenhals,

Stability characteristics of a single-phase free convection

loop, J. Fluid Mech. 67 (1975) 65–84 (Part 1).

[6] P.S. Damerell, R.J. Schoenhals, Flow in a toroidal ther-

mosyphon with angular displacement of heated and cooled

sections, ASME J. Heat Transfer 101 (1979) 672–676.

[7] M. Gorman, P.J. Widmann, K.A. Robbins, Nonlinear

dynamics of a convection loop: a quantitative comparison

of experiment with theory, Physica 19D (1986) 255–267.

[8] R. Acosta, M. Sen, E. Ramos, Single-phase natural

circulation in a tilted square loop, W€aarme- und Stoff€uuber-

tragung 21 (1987) 269–275.

[9] J.A. Yorke, E.D. Yorke, Chaotic behavior and fluid

dynamics, in: H.L. Swinney, J.P. Gollub (Eds.), Topics in

Applied Physics, Hydrodynamic Instabilities and the

Transition to Turbulence, Springer, Berlin, 1985, pp. 77–

95.

1390 A. Pacheco-Vega et al. / International Journal of Heat and Mass Transfer 45 (2002) 1379–1391



[10] M. Sen, C. Trevi~nno, E. Ramos, One-dimensional modeling

of thermosyphons with known heat flux, in: J. Menon

(Ed.), Trends in Heat, Mass and Momentum Transfer, vol.

2, Council of Scientific Research Integration, Trivandrum,

India, 1992, pp. 161–172.

[11] W.V.R. Malkus, Non-periodic convection at high and low

Prandtl number, M�eemoires Soci�eet�ee Royale des Science de

Li�eege 4 (1972) 125–128.

[12] P.J. Holmes, Center manifolds, normal forms and bifur-

cation of vector fields with application to coupling between

periodic and steady motions, Physica 2D (1981) 449–481.

[13] J. Carr, Applications of Centre Manifold Theory, Springer,

New York, 1981.

[14] J. Guckenheimer, P. Holmes, Nonlinear Oscillations,

Dynamical Systems, and Bifurcations of Vector Fields,

Springer, New York, 1983.

[15] M. Sen, E. Ramos, C. Trevi~nno, The toroidal thermosyphon

with known heat flux, Int. J. Heat Mass Transfer 28 (1)

(1985) 219–233.

[16] T.B. Benjamin, Applications of Leray–Schauder degree

theory to problems of hydrodynamic stability, Math. Proc.

Camb. Philos. Soc. 79 (1976) 373–392.

[17] R. Greif, Y. Zvirin, A. Mertol, The transient and stability

behavior of a natural convection loop, ASME J. Heat

Transfer 101 (1979) 684–688.

[18] M. Sen, E. Ramos, C. Trevi~nno, On the steady-state velocity

of the inclined toroidal thermosyphon, ASME J. Heat

Transfer 107 (1985) 974–977.

[19] K.-L. Ho, H.-C. Chang, On nonlinear doubly-diffusive

Marangoni instability, AIChE J. 34 (5) (1988)

705–722.

[20] C.C. Chen, H.-C. Chang, Accelerated disturbance damping

of an unknown distributed system by nonlinear feedback,

AIChE J. 38 (9) (1992) 1461–1476.

[21] M. Gorman, P.J. Widmann, K.A. Robbins, Chaotic flow

regimes in a convection loop, Phys. Rev. Lett. 52 (25)

(1984) 2241–2244.

A. Pacheco-Vega et al. / International Journal of Heat and Mass Transfer 45 (2002) 1379–1391 1391


